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The handover process in hybrid light fidelity (LiFi) and wireless fidelity (WiFi) networks (HLWNets) is
very challenging due to the short area covered by LiFi access points and the coverage overlap between LiFi
and WiFi networks, which introduce frequent horizontal and vertical handovers, respectively. Different
handover schemes have been proposed to reduce the handover rate in HLWNets, among which handover
skipping (HS) techniques stand out. However, existing solutions are still inefficient or require knowledge
that is not available in practice, such as the exact user’s trajectory or the network topology. In this work, a
novel machine learning-based handover scheme is proposed to overcome the limitations of previous HS
works. Specifically, we have designed a classification model to predict the type of user’s trajectory and
assist a reinforcement learning (RL) algorithm to make handover decisions that are automatically adapted
to new network conditions. The proposed scheme is called RL-HO, and we compare its performance
against the standard handover scheme of long-term evolution (STD-LTE) and the so-called smart handover
(Smart HO) algorithm. We show that our proposed RL-HO scheme improves the network throughput by
146% and 59% compared to STD-LTE and Smart HO, respectively. We make our simulator code publicly
available to the research community. © 2023 Optica Publishing Group. One print or electronic copy may be made for personal use

only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of

the content of this paper are prohibited.
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1. INTRODUCTION

Light Fidelity (LiFi) has been demonstrated to be one of the most
promising technologies to alleviate the radiofrequency (RF) spec-
trum crunch. By exploiting visible wavelengths, LiFi leverages
the already deployed light-emitting diode (LED) based illumi-
nation infrastructure to provide communication data. Then,
LiFi is an optical wireless and free space optics communications
technology addressed to short-range scenarios. A recent work
studied the techno-economic details of LiFi, demonstrating that
providing the existing lighting infrastructure with communica-
tion capabilities is very cost-effective [1]. LiFi presents consid-
erable advantages such as better security and, as highlighted,
the affordability of its off-the-shelf network elements. However,
LiFi signals will easily suffer from light-path blockages in indoor
scenarios with many moving elements, resulting in an unstable

quality of service. Prior works considered hybrid optical wire-
less and RF links to reduce the system outage probability [2]. In
the case of LiFi, exploiting the massive penetration of Wireless
Fidelity (WiFi) with hybrid LiFi and WiFi networks (HLWNets)
becomes a promising solution for future indoor wireless commu-
nication frameworks. Indeed, Cisco has recently demonstrated
that light-based and radio-based communications can coexist
using standard-based roaming such as IEEE 802.11r, which will
result in an easy integration, deployment, and use of LiFi [3].

WiFi networks usually cover areas with diameters of up to
20 m, whereas a LiFi atto-cell diameter is around 2-3 m [4]. This
leads to one of the biggest challenges that HLWNets need to
solve: implementing efficient handover (HO) mechanisms for a
network where the coverage of two different technologies over-
laps. Note that in such a hybrid scenario, using the handover
(HO) mechanisms intended for conventional mobile networks

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article Journal of Optical Communications and Networking 2

(i.e., based on signal strength strategies) will generate a large
number of HOs and, thus, an increased outage probability, a
large latency, and extra traffic produced in the backhaul.

In a common area with a single WiFi router and multiple LiFi
access points (APs), we can find two types of handovers: 1) hori-
zontal handovers (HHOs), which are produced when the user
switches from a LiFi AP to another; and 2) vertical handovers
(VHOs), which involves switching to a different technology,
from LiFi to WiFi or vice-versa. A HHO is fast and simple be-
cause it does not require inter-technology switches for the access
network. Multiple HHO techniques have been proposed in the
LiFi literature [5–8]. Differently, a VHO involves a longer delay,
processing, and network overhead, but it allows for strengthen-
ing the transmitter-receiver link with a different communication
technology.

In an HLWNet, a LiFi user that is moving fast will produce
many HHOs due to the small coverage of individual atto-cells
that constitute the whole LiFi network. In such a scenario,
switching the fast-moving user to WiFi will reduce the num-
ber of handovers and guarantee a wireless connection when
the LiFi channel may be blocked, at the expense of a potential
throughput decrease. Likewise, when the number of users con-
nected to WiFi is high, and the throughput of each WiFi user is
low due to the resource sharing, performing a VHO to switch
slow-moving users to LiFi will guarantee a better quality of
service for those users, while offloading the WiFi network. A
potential approach to reduce the number of VHOs in HLWNets
is aggregating LiFi and WiFi capacities with a protocol such as
the Multipath Transmission Control Protocol (MPTCP), in which
the Internet Engineering Task Force (IETF) has put much effort
since 2013 [9]. By including a subflow sequence number within
the packet overhead, MPTCP enables a user to be served by LiFi
and WiFi simultaneously. However, VHOs in HLWNets are still
needed for traffic offloading purposes.

Different works can be found in the literature addressing the
handover decision problem in HLWNets. A novel approach was
introduced in [10], where the authors exploit the statistical infor-
mation of channel blockages to propose a centralized handover
scheme that employs optimization techniques to maximize the
overall system throughput over a period of time. However, be-
cause of the high computational complexity, these optimization-
based systems are still far from a real implementation. Fuzzy
logic [11] and artificial neural networks (ANNs) [12] have been
proposed as a potential alternative to the complex problem of
handover decision-making in dense hybrid networks, exploiting
system parameters such as the channel state information, user
speed, required data rate or the network topology. However,
fuzzy-logic rules are pre-defined and must be adjusted every
time the network changes, whereas the ANN has a high complex-
ity, as claimed by authors in [12]. Other handover techniques in
HLWNets are based on a Markov decision process [13], a deci-
sion flowchart [14], or evolutionary game theory [15]. However,
none of these works consider practical scenarios with mobile
users.

Unlike current state-of-the-art approaches, in this paper, we
propose a simple and practical HO decision-making algorithm
for HWLNets. It is based on reinforcement learning (RL) and
dynamically adapts the handover decisions to new network con-
ditions. The proposed RL algorithm is supported by a classifica-
tion model that predicts the type of user trajectory by exploiting
information available at the user equipment, eliminating the
need for previous knowledge to carry out the handover deci-
sions.
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Fig. 1. The hysteresis principle of the standard handover
scheme in LTE (STD-LTE).

The remainder of this paper is organized as follows. Section 2
summarizes the work related to the handover schemes presented
in the literature. Section 3 introduces the system model, includ-
ing the corresponding models for the channels, the user mobility,
and the line-of-sight path blockages. In Sections 4 and 5 we de-
tail our proposal and the simulation results, respectively. Finally,
we draw our conclusion in Section 6.

2. RELATED WORK

In this section, we introduce the handover techniques used in
current standards and proposed in the literature that lay the
foundation of our proposal.

A. Standard Handover Scheme in LTE
The standard handover scheme in LTE, referred here as STD-
LTE, avoids successive handovers by applying hysteresis, which
postpones the handover decision for a pre-defined time. Fig. 1
represents the hysteresis principle of STD-LTE. As shown, it is
based on two parameters: the handover margin (HOM) and the
time to trigger (TTT). Specifically, the handover process is trig-
gered when the signal-to-interference-plus-noise ratio (SINR)1

of the host AP is HOM dBs below the SINR of other AP, here
called target AP. However, as depicted in Fig. 1, the handover
decision is not immediate. It must wait for a time period equal to
TTT. That is, it must ensure that the target AP keeps providing
the highest SINR for a certain amount of time TTT, with a typical
value in the order of hundreds of milliseconds [16]. The time
counter tc is running as long as the target AP provides better
SINR than the host AP and is reset otherwise. As shown in
Fig. 1, when tc reaches t0 + TTT, a handover decision is made
to transfer the user from the host AP to the target AP.

The main motivation for the hysteresis principle of STD-LTE
is to avoid the so-called ping-pong effect [16], i.e., it postpones
the HO decision to some extent, then avoiding frequent HOs.
However, it has limited effectiveness in reducing the number of
handovers in ultra-dense networks as the HLWNets. Besides, it
has the drawback that in case of LiFi-link blockage, the user will
stay disconnected for up to a time given by the TTT parameter
until a new handover decision is made.

B. Handover Skipping in HLWNets
Previous works in the literature have reduced the number of
handovers in HLWNets by skipping the unnecessary ones [17,

1In this paper, we use the SINR instead of the reference signal received power
(RSRP) to suit the HLWNet. According to the LTE standard, both SINR or RSRP
could be used [16]. Note that the target AP is also considered as interference for
the SINR computation, as the HO has not been established yet.
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18]. Specifically, they exploit SINR measurements to determine
whether the user is moving toward the central area of an AP or
along its edge area, skipping those APs that the user crosses by
the border of the cell.

Existing HO skipping schemes count time in the same way
as STD-LTE and use its hysteresis principle to trigger the HO
decisions. Several proceeding methods can be carried out when
the TTT duration is reached. Instead of immediately switching
to the target AP, an objective function can determine a new target
AP, which becomes the new host AP as soon as a figure of merit
(e.g. SINR) is larger than the one of the current host AP. The
handover skipping algorithm in [18], referred here as Smart HO,
introduces the following objective function:

Γ =

{
γ
(t0)
i + ∆γi, for LiFi

λ(γ
(t0)
i + ∆γi), for WiFi

(1)

where γ
(t0)
i is the SINR in time instant t0, which is the trigger-

ing time of the handover algorithm, ∆γi is the SINR difference
between the starting and ending points of the tc counter (de-
fined in Eq. (6) in [18]), and λ ∈ (1, ∞) is a weight coefficient
whose value is optimized according to the user’s speed. For fast-
moving users, λ should be relatively large to give the selection
preference to WiFi and to reduce the number of handovers. For
users that are moving slowly, it should be close to 1 to let them
access the AP offering the highest SINR.

A more recent work has integrated the user’s satisfaction de-
gree into the objective function and it has introduced a dynamic
weight coefficient that is trained by an ANN to fit different net-
work scenarios [12]. Although this work has been shown to
significantly reduce the number of handovers in HWLNets, it
has the limitation of relying on fixed HO decision-making rules,
which prevents it from adapting to changing network conditions
(i.e., the presence of new blocking elements, new interference
sources, etc.) or learning from past HO decisions.

In general, existing HO skipping schemes only consider when
the user is moving towards the center of a cell or crossing the
edges of one, overlooking other patterns of the user trajectory
that could help to further improve the HO decision-making in
HWLNets. For example, when one user is walking toward a wall,
it is most likely that the LiFi link will be often blocked by its own
body. In that case, it is intuitive that such users should be served
by WiFi. Otherwise, they will experience too many light-path
blockages and HHOs, which shortens their actual available time
for transmissions and then degrades their maximum achievable
throughput.

3. SYSTEM MODEL

The topology of the HLWNet considered in this work is shown
in Fig. 2, where the whole area is divided into square-shaped
atto-cells with a LiFi AP in the middle of each of them and the
WiFi router is located in a corner of the room. Note that squared
LiFi cells provide a performance between the hexagonal and
Poisson point process distribution deployments [19], but they
involve a simple design, provide good illumination uniformity,
and adapt very well to rectangular-shaped rooms. Though the
ideal place to install a WiFi router is the center of the coverage
area, in practice, the router location is subject to the availability
of a network jack and power outlet, and then, in residential
environments, it is mostly placed near a wall. We understand
that this is the most conventional network topology for realistic
HLWNets. Users are deployed randomly around the room, and
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Fig. 2. Considered network topology, where Ci, i ∈
{1, 2, ..., 16}, is the atto-cell created by the LiFi AP Li, and W1
stands for the WiFi AP.

each of them is holding a user equipment (UE) enabled for both
LiFi and WiFi communication. For LiFi, each UE includes V PDs
oriented differently to protect the LiFi link against random UE
orientation.

As for the network architecture, note that it consists of an
access network where LiFi and WiFi coverage overlap. The
WiFi router uses carrier sense multiple access with collision
avoidance (CSMA/CA), and the LiFi network employs a reuse
factor of 4 to reduce the inter-cell-interference (ICI). Also note
that, in practice, neither the UE nor the LiFi or WiFi APs have
information about the network topology in a given scenario,
i.e., the specific locations of the rest of network elements are
typically unknown, as this knowledge would involve the use of
sophisticated mapping tools.

A. LiFi Channel Model
The optical path gain from LiFi AP i to the v-th PD of user j is
formulated as follows [20]

Hi,j
LiFi,v =

(m + 1)APD

2πd2
i,j

cosm(ϕi,j,v)g f gc(ψi,j,v) cos(ψi,j,v) (2)

where m = −ln(2)/ln(cos(ϕ1/2)) is the Lambertian index of the
LED with a half-power semi-angle denoted by ϕ1/2, APD is the
area of the PD, di,j is the Euclidean distance between the LiFi
AP i and user j, ϕ and ψ are the irradiance and incidence angles,
respectively, g f stands for the gain of the optical filter, and

gc(ψi,j,v) =


n2

sin2 Ψmax
0 ≤ ψi,j,v ≤ Ψmax

0, otherwise
(3)

is the concentrator gain, where n is the refractive index of the
concentrator material and Ψmax is the maximum incident angle
accepted by the concentrator. Then, SINR between LiFi AP i and
user j is

γ
i,j
LiFi =

∑V
v=1

(
RPDHi,j

LiFi,vPopt

)2

NLiFiBLiFi + ∑α∈I ∑V
v=1

(
RPDHα,j

LiFi,vPopt

)2 (4)
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where NLiFi and BLiFi are the power spectral density (PSD) of
noise at the receiver and the bandwidth of the LiFi AP, respec-
tively, RPD stands for the PD responsivity, Popt is the optical
transmit power per LiFi AP, and I is the set of interfering APs.

B. WiFi Channel Model
The WiFi channel gain for user j is expressed as [21]

Gj
WiFi = |HWiFi|2 10−

L(dj )

10 , (5)

where L(dj) stands for the path loss of a WiFi channel with the
distance between the WiFi router and the user j denoted by
dj and, HWiFi, represents the multipath propagation of a WiFi
channel, which is formulated as

HWiFi =

√
K

K + 1
ejϕ +

√
1

K + 1
X1, (6)

where K is the Ricean K-factor, which is equal to one when dj is
lower than the breaking point distance dBP and zero otherwise, ϕ
is the angle of arrival/departure of the line-of-sight component,
and X1 is a complex Gaussian random variable with zero mean
and unit variance. The path loss of a WiFi channel is given by
[21]

L(dj) =

{
LFS(dj) + Xσ, dj ≤ dBP

LFS(dj) + 35 log10(
dj

dBP
) + Xσ, dj > dBP

(7)

where Xσ is a zero-mean Gaussian random variable with a stan-
dard deviation of σ, and the free-space path loss LFS is defined
as follows

LFS(dj) = 20 log10(dj) + 20 log fc
(dj)− 147.5, (8)

where fc is the operating frequency.
The signal-to-noise ratio (SNR) between the WiFi router and

user j is formulated by

γ
j
WiFi =

Gj
WiFiPWiFi

NWiFiBWiFi
, (9)

where NWiFi and BWiFi are the PSD of noise at the receiver and
the bandwidth of the WiFi AP, respectively, and PWiFi is the
electrical power transmitted by the WiFi router.

C. Throughput
The HWLNet link capacity for a user j that is being served by
either the i-th LiFi AP or the WiFi router can be denoted by

rj =


BLiFi

2 log2

(
1 + e

2π γ
i,j
LiFi

)
, for LiFi

BWiFi log2

(
1 + γ

j
WiFi

)
, for WiFi

(10)

Note that, unlike WiFi, LiFi cannot be bounded by Shannon
capacity due to modulating the intensity of light, i.e., the trans-
mitted signal is real and positive. Then, we followed up the
tighter bound proposed in [22].

D. User Mobility
The user mobility and orientation have been modeled using the
orientation-based random waypoint (ORWP) model introduced
in [23], where the user moves in zigzag from one waypoint to
another, with the waypoints randomly distributed. We assume
that the speed is constant along all the way due to the short
distances walked indoors [24]. During movement, the orienta-
tion of the UE also changes randomly as it occurs in reality [23].
Since the optical wireless channel is not isotropic, the device ori-
entation significantly affects the channel gain and the occurrence
of light-path blockages, especially for mobile users.

E. LiFi Line-Of-Sight Link Blockages
Different from the statistical models used in other works in the
literature, we assume a realistic object model for the link-path
blockage [10]. Specifically, we employ an object model based
on cylinders to represent the body of the users within the room.
They are modeled as a cylinder of 15 cm radius and 175 cm
height and, each of them is holding a UE separated 30 cm from
the body at a height of 100 cm.

Considering a more realistic model for the light-path block-
ages allows us to have a better understanding of the challenges
faced by HO algorithms in real HLWNets. For example, we
found a high probability of light-path blockage when the user
leaves the LiFi cell of its host AP because its own body will likely
block the LiFi link, which is illustrated in Fig. 2. This actual
effect considerably increases the occurrence rate of light-path
blockages in our scenario with respect to other works in the liter-
ature that model the blockage as a statistical variable following
a Poisson point process [18]. As an example, for a user moving
at 3 m/s in our scenario and following the standard handover
scheme of LTE [16], we have measured an occurrence rate of 1.5
blockages/s, while the maximum occurrence rate of light-path
blockages considered by other works in the literature is 0.07
blockages/s for users moving at 5 m/s [18].

4. NEW HANDOVER ALGORITHM

In this section, we introduce a novel handover scheme that
exploits machine learning (ML) techniques (both Supervised
Learning and Reinforcement Learning) for HO decision-making
in HLWNets. Specifically, we propose an RL-based algorithm
that jointly considers (i) the current serving network, (ii) the
user’s trajectory, and (iii) the user’s quality of service in terms
of SINR to make optimal HO decisions. To determine the user
trajectory, we have designed a prediction model that takes, as
inputs, parameters already available for the UE in a realistic
scenario (i.e., SINR measurements of all the deployed APs and
the ID of the current serving AP).

A. Motivation for using ML techniques and a HO-distributed
approach

The main motivation for using RL to make handover decisions in
HLWNets is that compared to other approaches in the literature
(i.e., trajectory-based [17], optimization-based [25], fuzzy-logic-
based [26]), an RL-based HO algorithm (i) does not require previ-
ous knowledge of the network topology or exact user trajectory,
(ii) reduces the complexity and thus the energy consumption and
processing delays, and (iii) enables dynamic adaptation to new
network conditions. On the other hand, Supervised Learning
has been broadly exploited for prediction/classification tasks,
and our motivation to use it in this work is its proven efficiency
in predicting user trajectory in mobile networks. Existing works
in the literature have shown a prediction accuracy of more than
90% and execution times in the order of millisecond [27].

We adopt a distributed approach to implement the proposed
HO algorithm. It means that the HO decisions are made at the
UEs and not in a central unit connected to all the deployed WiFi
and LiFi APs, as it would be the case for a centralized approach.
Our distributed approach presents the following advantages
against a centralized one: (i) it requires less signaling between
the network elements, which reduces the overall network over-
head and minimizes the use of resources; (ii) it reduces the
handover delay because the UEs do not need to communicate
with the central unit to receive handover-decision instructions;
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Algorithm 1. Proposed RL-HO Scheme.

Input: γ
(t)
CH, γ

(t)
i , ∀i ∈ I, k ∈ {LiFi,WiFi}

Output: iNH
tc ← 0
while tc < TTT do

if γ
(t)
CH + HOM ≤ γ

(t)
i , ∀i ∈ I then

if k = LiFi & Light-path blockage then
iNH ←WiFi AP
tc ← 0

else
tc ← t− t0

else if tc = 0 then
tc ← t

else
tc ← 0

iNH ← Output of Algorithm 2.

and (iii) it provides better scalability because its complexity does
not increase with the number of nodes in the network.

B. Overview of the Proposed Handover Scheme
Our RL-HO handover scheme is based on RL and assisted by a
classification algorithm to predict the user trajectory. It allows
(i) finding a near-optimal solution for HO decision-making (i.e.,
selecting the serving network, either LiFi or WiFi) and dynami-
cally adapting it to new network conditions, (ii) exploiting the
user’s knowledge about the environment (i.e., current serving
network, user trajectory, and user quality of service in terms
of SINR) in favor of the HO decision-process, and (iii) learning
from the experience of past HO decisions.

Algorithm 1 shows the high-level pseudocode of our pro-
posed RL-HO scheme, where t0 denotes the time instant when
the HO process is triggered. As shown, to trigger the HO
decision-making process, we follow a similar approach as in
LTE [16], triggering it when any of the available APs i ∈ I pro-
vides an SINR that is HOM dBs larger than the one of the current
host AP (γCH) formulated as:

γ
(t)
CH + HOM ≤ γ

(t)
i , ∀i ∈ I. (11)

Note that I is the set of all available APs, iCH is the current host
AP, iNH is the new host AP selected by our RL-HO algorithm,
and k indicates the current serving network, which could be
either LiFi or WiFi.

From Algorithm 1, it should be noticed that, in our RL-HO
scheme, when the user is being served by LiFi and the condition
in Eq. (11) is satisfied, our algorithm checks if there is a light-path
blockage.2 If so, it immediately switches the user to WiFi and
resets the tc counter. By doing so, we avoid outage periods the
user would experience if it had to wait for a period TTT to make
an HO decision, as in the STD-LTE algorithm. Otherwise, if there
is no light-path blockage, or the user is being served by WiFi, our
algorithm increases the tc counter and waits for a time period
TTT to make a HO decision. Another important difference with
STD-LTE is that when TTT is reached, our scheme invokes the
RL-based algorithm in Fig. 3 to make the HO decision, instead
of just selecting the current target AP as the host one.

2Our detection of the light-path blockages is based on measurements of the
SINR. We consider there is blockage when the SINR of the host AP LiFi AP is
below a certain threshold.
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)  s
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Actions set 
A = {LiFi ,WiFi, NHO}

Action (a)Host AP ID

s(1): LiFi or WiFi

Fig. 3. Block diagram of the proposed RL-HO scheme for
HLWNets.

Figure 3 shows the block diagram of the proposed RL algo-
rithm for HO decision-making in HLWNets. As can be observed,
it mainly consists of an RL agent that is running at the UE and in-
teracts with the environment (HLWNets) by exchanging certain
information. Within the RL agent, we have two main blocks: one
to define the states of the RL algorithm and the other to make
the HO decisions. As shown, the states of the RL algorithm are
defined in terms of the current serving network k ∈ {LiFi, WiFi},
a prediction of the user trajectory, and the quality of service
in terms of SINR. For determining the user trajectory, we have
designed a prediction algorithm based on Extreme Gradient
Boosting trees (XGBoost)3 whose inputs are (i) the SINR mea-
surements from all the available APs and (ii) the ID of the current
host AP. A detailed description of the prediction and RL-based
algorithms proposed in this work is provided in Sections 4C and
4D, respectively.

C. Prediction of the user trajectory with Supervised Learning
In this work, we focus on predicting the following cases (classes)
of the user trajectory: walking to the center of the cell, crossing
a cell edge, or walking toward a wall, which are represented
in Fig. 4. These are the most relevant cases for supporting the
HO decision-making. In general, if the user is being served by
LiFi and crossing the border of a cell, it would be preferable
to skip that LiFi AP and switch directly to the next one. This
could be learned by the HO algorithm if it had a prediction
of the user’s trajectory in advance. If the user is connected to
the LiFi network and walking toward a wall, most likely it will
experience frequent light-path blockages, which will introduce
frequent handovers and affect the communication performance.
So, for LiFi users walking toward a wall, the optimal choice is to
switch them to WiFi to avoid frequent LiFi HHO.

C.1. Proposed prediction model

To predict the user’s trajectories, we design the classification
algorithm depicted in Fig. 5. To implement it, we opt for an
XGBoost-based algorithm [28] because it has already been shown
that, among Support Vector Machine (SVM) and a Deep Neural
Network (DNN), XGBoost is the one providing the best accu-
racy on the problem of predicting the user’s mobility in cellular
networks [27]. Also, note that XGBoost is generally faster and
uses fewer computational resources than an ANN. Moreover,
XGBoost is designed to be highly parallelizable, making it faster

3XGBoost is a variant of the Gradient Boosting Machine (GBM) algorithm where
the trees growing is done in a way to reduce the misclassification rate [27].
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to be trained on large datasets than ANNs, which can be slower
to train due to the complexity of the backpropagation algorithm.

As shown, our prediction algorithm takes as input the current
SINR measurements for all the APs in the HLWNet and the ID of
the current host AP, whereas ∆SINR refers to the SINR difference
between the starting (tc = t0) and ending (tc = t0 + TTT) points
of the tc counter, so it is derived from the SINR measurements
done by the UE. The output of the proposed algorithm will be
the prediction of the user’s trajectory, for which we use three
classes: (1) walking toward the cell center, (2) crossing the cell
edge, and (3) walking toward a wall. Note that the selected
variables (features) to be used as predictors in the proposed
model are highly relevant for predicting the user trajectory. For
example, ∆SINR has a high discriminating power because it can
indicate whether the user is moving towards the central area of
a LiFi AP or not (i.e., a distinctive pattern for class 1). Likewise,
users walking towards a wall will measure low SINR values for
all the deployed LiFi APs.

C.2. Dataset Generation, Training and Test

We generate the dataset for training the ML model through sim-
ulations4. Specifically, we simulate a user following the typified
trajectories of interest in all the LiFi cells of the considered sce-
nario. For the sake of simplicity, only a subset of the considered
trajectories is represented in Fig. 4. For each trajectory within a
LiFi cell, we consider different user speeds and starting points
relative to the LiFi AP to ensure we generate enough representa-
tions of the potential user’s location when the HO algorithm is
triggered. Specifically, the generated dataset consists of 52800
records considering that the user could be moving at any of the
following speeds: 0.5 m/s, 1.0 m/s, 1.5 m/s, 2.0 m/s, 2.5 m/s,
or 3.0 m/s, chosen from the average human walking speeds [29]
and 200 different start points for each type of user trajectory

4Note that, in practice, such dataset can be generated by the assistance of a
TurtleBot robot.

(i.e., walking towards a wall, walking towards the cell center, or
crossing the cell edge) within the LiFi cells.

We use 70% of the dataset for training (following a cross-
validation approach with 5 folds) and the remaining 30% for
testing. From the hyper-parameter tuning, we got the following
optimal parameters for the XGBoost algorithm: learning rate =
0.2, minimum loss reduction = 0.3, maximum depth of a tree = 6,
and minimum child weight = 3. The test results of our ML model
show an accuracy of 98.5% in predicting the user’s trajectory.

D. Handover decision making with Reinforcement Learning
As depicted in Fig. 3, our RL model consists of a set of environ-
ment states S, a set of actions A, and a set of rewards R ⊂ R,
which are defined as follows:

• States: The states are defined as the tuple s =

(s(1), s(2), s(3)) ∈ S where s(1) indicates the current serv-
ing network, i.e., LiFi or WiFi; s(2) is the prediction of the
user trajectory, indicating if it is walking to the center of a
cell, crossing the border of one, or walking toward a wall;
and s(3) specifies the quality of service in terms of SINR,
being a binary variable that takes value 0 or 1 when the
SINR of the user is below or above a threshold (set to 10
dB), respectively.

• Actions: The actions set is given by A = {LiFi, WiFi, NHO}.
Each time the RL algorithm is invoked, the agent selects an
action a ∈ A which will determine whether the user will
be served by the best LiFi AP (a = LiFi), the best WiFi AP
(a = WiFi), or do no handover (a = NHO) by skipping it.

• Reward: The agent’s instantaneous reward is a combination
of the handover success, defined as I ∈ {0, 1} to indicate if
the HO was successful or not; the user’s satisfaction degree
in terms of the maximum achievable data rate, defined as ζ
= current data rate/previous data rate ; and the handover
cost δ, whose value depends on the type of handover pro-
duced by the action taken. Specifically, we set up δ equals
0, 0.3, and 0.7 for no handover (NHO), horizontal handover
(HHO), and vertical handover (VHO), respectively, as the
VHO is often much more costly than HHO [30, 31]. This
way, we encourage the agent to ensure successful handovers
and choose the APs that meet its data rate requirements
while minimizing the handover overhead. As a result, the
reward can be defined as follows:

R = I ∗ (ζ ∗ β + (1− δ)(1− β)), (12)

where β is a design parameter that controls the tradeoff
between guaranteeing the desired data rate and keeping the
number of handovers low. If β = 1, the reward will favor
the actions leading to the maximum achievable data rate
without considering the number of handovers required to
guarantee that. Differently, if β = 0, the agent will prioritize
minimizing the number of handovers at the expense of a
lower data rate.

From the above, note that the proposed RL algorithm presents
a low complexity. Namely, it has 12 states and 3 actions to choose
from in each state. Thus, compared to the alternative of mod-
eling this problem using low-complexity heuristics with fixed
rules, our RL-based solution will not offer a much higher com-
plexity, but it ensures the dynamic adaptation to new network
conditions.
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The aim of our RL algorithm is to find the optimal policy
Π∗ that maximizes the rewards observed by the user along its
trajectory. That is,

Π∗ = argmax
π

E[R], (13)

where E is the expectation with respect to the randomness in the
channel gain.

As depicted in Fig. 3, our RL agent is running on each UE
connected to the HLWNet (Environment). Each of them is a de-
cision maker, and their purpose is to find the Π∗ that maximizes
the cumulative reward over time. Each time the HO algorithm
is triggered, the RL agent (i) observes its current state s ∈ S by
discovering its environment, (ii) makes a HO decision by select-
ing one of the available actions a ∈ A, (iii) consequently the UE
receives a reward R from the environment and (iv) passes to
another state which is defined by the new network conditions.
Through this interaction with the environment, the RL agents
can learn the optimal HO decisions for each state.

In order to find Π∗, we use the Q-learning because it can pro-
vide the simplicity and low computational complexity required
to implement the proposed RL-HO algorithm in actual UEs. We
adopt Q-learning instead of an On-Policy algorithm (i.e., Sarsa)
because it significantly simplifies the modeling, implementation,
and analysis of RL-HO. Also, because it guarantees the algo-
rithm convergence as long as all action-state pairs continue to
be updated, which we ensure by setting a proper exploration
rate. Finally, Q-learning allows learning from the interaction
with the environment with no prior knowledge about it (i.e., no
need to know the transition probability among the states). Pre-
vious works in the literature have already shown the efficiency
of Q-learning in solving the HO decision-making problem in
heterogeneous networks (HetNets) [32, 33].

In RL, Π∗ has an optimal action-value function q∗(s, a) asso-
ciated with it, which is given by:

q∗(s, a) = max
π

qπ(s, a), for all s ∈ S and a ∈ A. (14)

In Q-learning, q∗ is estimated for a specific behavior policy π
and for all the considered states s and actions a. Note that, in
practice, it is not possible to ensure that the proposed Q-learning
algorithm will find q∗ and thus make optimal HO decisions
because it requires that all state-action pairs are visited in an
infinite number of times [34]. Also, the state’s definition for the
Q-learning algorithm relies on a prediction of the user trajectory
that cannot ensure a 100% accuracy. Still, it is possible to show
that the Q-learning algorithm actually converges and finds the
best action to be taken in a particular state, as we will show in
Section 5.

Algorithm 2 depicts the RL algorithm proposed in this work.
As can be observed, we follow the ϵ-greedy policy. It means
that in step t of the algorithm, the user observes its current
state st ∈ S and takes the action with maximum value (i.e.,
at = argmaxa∈A Q(st, a)) with a probability 1− ϵ, or a random
action with a probability ϵ, where ϵ ∈ [0, 1] is known as the
exploration rate and Q(st, at) is an estimate of the q∗ function in
the step t of the RL algorithm. In the next step of the algorithm
(t + 1), the agent is in a new state (st+1 ∈ S), where it observes
the reward (Rt+1) received from the previous action and updates
the action-value function using the following equation:

Q(st, at)← Q(st, at) + α[Rt+1 + ρ max
a

Q(st+1, a)−Q(st, at)],

(15)

Algorithm 2. Proposed Q-learning algorithm for HO decision-
making in HLWNets.

Input: Initialize Q(s, a) ∀s ∈ S and ∀a ∈ A; ϵ; α; ρ
Output: at

1: t← 0
2: while t < tEnd do
3: Observe st
4: Generate x from U[0,1] (uniform distribution)
5: if x ≤ ϵ then
6: Uniformly select a random action at from A

7: else
8: Select the action at = argmaxa∈A Q(st, a)

9: t← t + 1
10: Observe st+1 and Rt+1
11: Update the action-value function using Eq. (15).

where α and ρ are two design parameters of the Q-learning algo-
rithm, known as the learning rate and discount rate, respectively.
If we look closer at Eq. (15), we notice that the term between
brackets is actually the difference between the estimated value
Q(st, at) and its best estimate Rt+1 + ρ max

a
Q(st+1, a), which

can be seen as an error. So, α in Eq. (15) is actually adjusting
our estimates based on that error, and ρ indicates how much we
value future rewards. Finally, it should be noticed that Algo-
rithm 2 will be executed each time Algorithm 1 invokes it and
until the user reaches the end of its trajectory.

5. SIMULATION RESULTS

We use Monte Carlo simulations to evaluate the performance of
the proposed method. Our simulation code was implemented
using MATLAB and is publicly available to the research com-
munity.5 It consists of two scripts: one to generate the training
dataset for trajectory prediction according to Section 4.C.2; and
the other to implement our proposed RL-HO algorithm as de-
scribed in the entire Section 4, in addition to the two baselines
considered for comparison in this paper, STE-LTE [16] and Smart
HO [18]. Note that both scripts must use the same system model
described in Section 3. Finally, to implement the XGBoost algo-
rithm in MATLAB, we used the functions provided in [35].

As shown in Fig. 2, we consider a realistic scenario with only
one WiFi AP placed in a corner of the room and 16 LiFi APs
separated by 2.5 m. The vertical distance between the user and
the LiFi APs is 1.5 m. The bandwidth of all the LiFi APs is set to
20 MHz, which is within the typical range of a 3-dB bandwidth
LiFi link in the visible light band [19]. For the WiFi AP, we use
40 MHz, as it is the case of the IEEE 802.11n standard operating
in the 5 GHz band. The levels of transmission and noise power,
as well as the rest of simulation parameters, are indicated in
Table 1. The parameters of the WiFi channel are according to [21],
i.e., we set ϕ = 45◦, dBP = 5 m, σ = 3 dB for dj ≤ dBP, and σ = 5
dB for dj > dBP. We consider that each UE is equipped with V =
2 PDs placed in orthogonal planes [36]. The average overhead of
HHO and VHO are set to 200 ms and 500 ms, respectively [31].
To provide a fair comparison, all the compared algorithms use
exactly the same parameters’ values, including the same HOM
and TTT, which are set to 1 dB and 320 ms, respectively [16].
Also, all of them immediately switch the user to WiFi in case of
light-path blockage. Unless we indicate otherwise, for the RL
algorithm we set ϵ, α, and ρ to 0.1, 0.5, and 0.2, respectively.

5https://github.com/dayrenefrometa/RL-HO

https://github.com/dayrenefrometa/RL-HO
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Parameter Value

Room size (length by width by height) 10 x 10 x 3 m

The physical area of each PD, Apd 1 cm2

Optical filter gain, g f 1

Refractive index, n 1

FoV semi-angle of the PD, Ψmax 90◦

Detector responsivity, Rpd 0.53 A/W

Half-intensity radiation angle, Φ1/2 60◦

Modulated optical power per LiFi AP, Popt 3.5 W

Transmitted power of the WiFi AP, PWiFi 15 dBm

Bandwidth per LiFi AP, BLiFi 20 MHz

Bandwidth per WiFi AP, BWiFi 40 MHz

PSD of noise in LiFi, NLiFi 10−21 A2/Hz [37]

PSD of noise in WiFi, NWiFi -174 dBm/Hz [37]

Table 1. Simulation parameters.

A. Finding the optimal λ of Smart HO in our scenario
One of the baselines used in this paper is the Smart HO al-
gorithm [18] described in Section 2B, which uses the objective
function in Eq. (1) to determine the target AP. One key parameter
of the objective function is the weight coefficient λ that should be
optimized according to the user’s speed. Also, we should notice
that the optimal values of λ highly depend on the considered
scenario. In this work, we analyze a different scenario from the
one in [18]. So, in order to not underestimate the results and
make a fair comparison, we first find the optimal values of λ
to be used in the baseline Smart HO algorithm under the new
scenario.

Fig. 6 shows the user’s throughput as a function of the weight
coefficient λ. As it can be observed, for our scenario, the through-
put saturates at a certain λ value, and it is possible to find λ
providing a near-to-optimal performance for all the considered
user speeds. Specifically, for λ = 15, we can get the maximum
achievable throughput for each user speed. For that reason, in all
the simulation results presented in this section, we set λ=15 re-
gardless of the user speed. Also, this guarantees a more practical
approach and ensures a fair comparison with our RL-HO algo-
rithm, which does not use information about the user’s speed to
make the handover decisions.

B. Handover rate
Fig. 7 shows the rates of HHO and VHO for different user speeds.
In general, given the small coverage of the LiFi cells, the han-
dover rate for all the considered approaches increases with the
user speed. However, we can observe that the proposed method
ensures the lowest rates of HHO and VHO for most of the con-
sidered user speeds, while STD-LTE provides the highest ones.
The only exception is for a user speed of 0.5. m/s when our
approach provides a slightly larger rate of HHO than the STD-
LTE or Smart HO approaches. This is because, for slow-moving
users, our RL-HO understands it is better to keep the user con-
nected to the LiFi network, which could lead to frequent HHO.
Nonetheless, as depicted in Fig. 7, the HHO rate increase with
respect to the other approaches is marginal. Also, it should be
noted that, for our scheme, the increase of the handover rate
with the user speed is slower than for the other approaches. This
is because by exploiting the prediction of the user trajectory,
our RL-HO algorithm can learn to skip unnecessary handovers,
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Fig. 6. User throughput versus the weight coefficient λ of
Smart HO.

especially those triggered when the user is crossing the edge of
a cell. More specifically, for a user speed of 3 m/s, RL-HO can
reduce the rate of VHO of STD-LTE and Smart HO at 54% and
43%, respectively. Likewise, the rate of HHO is reduced at 85%
and 71%, with respect to STD-LTE and Smart HO, respectively.
Fig. 8 depicts the percentage of time that the user is connected
to each network (LiFi or WiFi) or under light-path blockage, for
each handover approach and different user speeds. As shown,
when the user is moving fast, our RL-HO algorithm decides to
serve it with WiFi most of the time (more than 80% of the time
for 3 m/s), which considerably reduces the handover rate as
mentioned before.

Finally, note that in our simulation results, the rate of VHO
is much higher than the HHO one for all the considered user
speeds and handover mechanisms. This is because we are work-
ing with a realistic LiFi link blockage model that leads to a high
occurrence rate of blockages, as shown in Figure 9. Since the user
is in movement all the time, and given the hysteresis principle
followed by all the considered HO approaches, each time the
user is transferred to WiFi due to a light-path blockage (which
happens really often), it is hard for the HO algorithms to switch
the user back to LiFi and keep it connected to the LiFi network
for a long time, especially when it is moving fast.

C. Average throughput

Fig. 10 presents the user throughput as a function of the user’s
speed. As shown, in this case, we have tested the proposed
RL-HO algorithm with different exploration rates (i.e., ϵ = 0.01,
ϵ = 0.1, ϵ = 0.3, and ϵ = 0.7). In all cases, our algorithm
significantly outperforms STD-LTE and Smart HO for all the
considered user speeds. Specifically, for a user speed of 3 m/s,
our RL-HO with ϵ = 0.1 can provide an average throughput
that is 1.6 and 2.5 times higher than the ones provided by Smart
HO and STD-LTE, respectively. Also, note that, unlike the other
approaches, for ϵ = 0.1, ϵ = 0.3, and ϵ = 0.7, the proposed RL-
HO algorithm provides an average throughput that increases
with the user speed. This is because our RL-HO algorithm
learns by (1) being triggered, (2) making an HO decision, and
(3) receiving the corresponding reward. So, the higher the user
speed, the more likely the RL algorithm is triggered due to
variations on the WiFi and LiFi channels, and thus, the faster it
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Fig. 8. Percentage of time the user is connected to WiFi, LiFi,
or blocked along its trajectory.

learns that it is better to serve fast-moving users with WiFi. Each
time the RL algorithm decides to switch a fast-moving user to
the LiFi network, it will likely find a light-path blockage or a non-
satisfied user, thus receiving a low reward. Quickly learning that
it is better to serve fast-moving users with WiFi will oftentimes
reduce the handover rate and light-path blockage probability,
which considerably improves the average throughput, as shown
in Fig. 10.

From Fig. 10, we should also note that by slightly increasing
the exploration rate (ϵ = 0.3), we can improve the average
throughput for slow-moving users, while for fast-moving users,
it is better to keep the exploration rate low (ϵ = 0.1). Also,
notice that ϵ = 0.01 worsens the performance of our RL-HO
mechanism. The reason is that with such a lower exploration
rate, our RL algorithm keeps exploiting the same actions instead
of exploring others that could provide a better performance.
Finally, note that for ϵ = 0.7, the proposed RL algorithm shows
lower performance than for ϵ = 0.3, which is the consequence
of increasing the probability of selecting random actions. We
did not try exploration rates larger than 0.7 because it means
selecting random actions very often, which will worsen the
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0.5 1 1.5 2 2.5 3

100

150

200

250

300

350

400

450

500

Fig. 10. Average throughput versus the user’s speed.

performance even more.

D. Impact of the Number of Users

Finally, we evaluate the impact of the number of users consid-
ered within the room. Fig. 11 shows the average throughput of
one user along its trajectory when increasing the total number
of users walking around the same room. As shown, the average
throughput of STD-LTE and Smart HO decreases with the num-
ber of users because more users walking around will increase the
probability of light-path blockage. However, the proposed RL-
HO algorithm, provides an almost constant average throughput.
We can even see a slight increase with the number of users. This
is because the proposed RL algorithm learns by interacting with
the environment and updating the action-value function each
time it is triggered. So, increasing the number of users increases
the number of light-path blockages and, thus, the number of
times the RL algorithm is triggered, boosting up the learning
process to find the best action for a particular state. In other
words, increasing the number of users will quickly teach our RL
algorithm the best handover decisions it could make, slightly
increasing the average user throughput.
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users for a user speed of 1.5 m/s.
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Fig. 12. Action values vs. step number for state S, where the
step number indicates the number of times that the RL algo-
rithm has been triggered under state S.

E. Convergence of the proposed RL algorithm

Figure 12 provides more details about the learning process of
the proposed RL algorithm and its convergence time (i.e., how
long it takes to find the best action to be taken in a specific state).
For a certain state S (user served by LiFi, crossing the edge of a
LiFi cell, and receiving good SINR), Figure 12 shows the action
values for each step number of the RL algorithm. Note that by
step number, we mean the number of times the RL algorithm
has been triggered under state S. As observed, after around
60 steps, the RL algorithm converges because it has found the
best action for this particular state. Action A3 (No Handover)
shows and maintains the highest value compared to the other
actions, which makes sense because, in this particular state, it
sounds reasonable to avoid increasing the network overhead
with unnecessary handovers. Finally, note that although the
convergence time may seem long, once the RL agent is trained,
the optimal configuration of the RL algorithm can be shared
with new UEs joining the network.

6. CONCLUSION

In this work, a novel ML-based handover scheme for HLWNets
was proposed. It uses the SINR measurements already available
at the user equipment to predict the user trajectory and supports
a Reinforcement Learning algorithm that makes the handover
decisions. Unlike other approaches that use the rate of change
of the SINR to determine if the user is moving toward the center
of a cell or not, we implement a classification algorithm that al-
lows us to predict more patterns of the user trajectory (e.g., user
walking to a wall), which we exploit to optimize the handover
decision-making process. Our RL-HO scheme consists of a re-
inforcement learning agent that makes the handover decisions
based on the current state, and by interacting with the HLWNet,
it learns how to make near-optimal handover decisions. Specifi-
cally, it learns that fast-moving users or those walking to a wall
are better served by WiFi in order to avoid frequent unnecessary
handovers. On the other hand, it learns that slow-moving users
are better served by LiFi and that the LiFi APs that the users
cross by their cell edge can be skipped to minimize unnecessary
handovers. Simulation results have shown that RL-HO reduces
the handover rate of the standard HO scheme of LTE by 54% at
a user speed of 3 m/s. Regarding the average throughput along
the user’s trajectory, RL-HO improves the ones provided by
the standard handover scheme of LTE and the smart handover
algorithm by 146% and 59%, respectively.
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